GPS相对定位在重力卫星KBR测距中的应用
发布时间:2010/12/8 来源:电子技术 作者:万祥 张孟阳 阅读:40272
分享到:

  摘要:卫星重力测量技术的应用对于地球重力场的反演具有划时代的意义,是当今大地测量领域的研究前沿和关注热点之一,我国目前在该领域研究尚属起步阶段。文章介绍了重力卫星测量系统的组成,研究了GPS相对定位与定时在重力卫星K波段测距系统(KBR)微米级测距中的作用,给出了利用双频 GPS相对定位与定时结果修正KBR测距的方案,并通过仿真实际应用对该方案进行验证。验证结果表该方案可达到重力卫星测量的要求。

  关键词:重力卫星;K波段测距系统(KBR);双频;相对定位;定位精度

  地球重力场是地球的一个基本物理场,重力场及其变化反映了地球表层及其内部的物质分布和运动,决定了大地水准面的起伏和变化,地球重力场的精确测量对大地测量、地球物理、地球动力学和海洋学等学科的发展具有极其重要的意义。卫星重力测量技术的应用对于地球重力场的测量具有划时代的意义,是当今大地测量领域的研究前沿和关注热点之一。常规的重力场确定方法主要依靠地面重力观测,地面观测周期较长,且占地球四分之三的海洋重力数据缺乏,确定重力场的精度受到限制。随着空间定位技术的发展,近年来在地球重力场研究方面所取得的成就远远超出过去30年的总和。20世纪80年代出现的卫星测高技术较大地提高了重力场的确定精度,如著名的EGM96模型。2000年7月由德国GFZ发射的重力卫星GHAMP,迈出了卫星重力测量的重要一步。2002年3月由美国宇航局和欧洲联合发射的低跟踪卫星GRACE,采用KBR双向测距,同时利用双频 GPS定位、测时结果修正KBR测距,使得测距精度达到几十微米,距离变率测定精度达到0.1 μm/s。此外,欧洲空间局也在2009年3月份成功发射了GOCE重力梯度卫星,卫星重力测量得到了空前的发展。但是,我国目前对重力卫星的研究处于起步阶段,重力卫星星间高精度测距技术也在重点攻关之中。为此,文章主要介绍双频GPS接收机在重力卫星星问高精度测距中不可或缺的作用,并提出一种利用双频GPS观测量进行修正KBR测距的工程化方案,为我国后期的卫星重力探测计划提供工程参考。

1 测量系统组成

  整个重力卫星星座由两颗相距200 km,轨道高度500 km的卫星组成,每颗卫星都搭载了高精度双频GPS接收机、K/Ka双波段(24/32 GHz)测距系统和高精度的时钟等(每颗卫星上搭载的GPS接收机和KBR的时间标准采用同一个振荡器)如图l所示。两星间精密测距的基本思路是:首先利用K波段测距系统(KBR)对两星之间的距离进行测量。与此同时,A星和B星利用其各自的可视GPS导航星进行绝对定位与定时,再通过共视GPS导航星进行相对定位与定时,并利用GPS相对定位与定时结果修正KBR测距,使其测距精度达到微米级。

2 GPS定位结果修正KBR测距

2.1 KBR双向测距及时间同步误差

  重力卫星A和B间通过KBR系统进行精密双向测距,其测距原理如下。
  重力卫星A在理想真实时刻t对重力卫星B载波信号的观测量可以表示为:

  式中,trA、trB分别为重力卫星A和B的KBR时标;CA(tr)、CB(tt)分别为重力卫星A和B在信号接收时刻和发射时刻的钟差;dCA(tr)、dCB(tr)分别为重力卫星A和重力卫星B在接收时刻的钟漂。钟漂对KBR相位的影响仅仅发生在信号发射至接收这一时段 (r≈0.7 ms),只要钟漂达到10-10,就可以达到1/1000周的测相精度,因此,影响测相精度的主要误差是时标ttA、trB的同步误差。

2.2 双频GPS观测量修正KBR测距误差

  对重力卫星星座而言,为满足几百公里空间分辨率的重力场测定精度,要求两颗卫星之间的测距精度可达到几个微米。卫星的KBR采用32.7/24.5 GHz频率信号(波长约1 cm),为此,测相精度必须达到千分之一周(1/1 024)。经调制后的差频信号分别为502和670 kHz,为保证1O-4周的测相精度,定时精度应达到10-4/670 kHz=150 ps(O.15 ns),这一精度对在轨振荡器而言几乎是不可能的。利用IGS产品,采用精密定轨(POD)技术,可确定KBR测量的绝对时标和卫星的位置,位置精度可达到2~3 cm,测时精度可达到0.1 ns,可满足KBR时标的要求,因此,GPS地面数据处理系统是KBR达到微米级精度的关键技术之一。重力卫星星载GPS接收机承担的主要任务在于:

  1)利用GPS确定的载体卫星厘米级精度摄动轨道恢复长波长项的重力场;
  2)利用GPS绝对定时结果消除星载振荡器的长期钟漂;
  3)利用GPS相对定时结果校准K波段测距的同步误差,精度为0.1 ns(3 cm)。

  总体上,相对定位和相对定时采用事后处理方案,以GPS双频载波相位观测值为基本观测量,辅以载波相位平滑伪距,动力学平滑等多种处理手段,获得模糊度固定坐标解。首先对观测数据进行质量检测,修正载波相位可能发生的周跳,剔除具有粗差的观测值。以一天观测弧段为处理单元,前后延伸3 h,即前一天21:00至第二天的3:00,共30 h,以便内插GPS卫星IGS精密星历。

  采用载波相位相对定位的关键是正确确定整周模糊度,采用整数解可以提高坐标解的稳定性和精度。但是,为了消除电离层误差,必须采用L3组合,而L3不具备整数解。测相伪距双差观测方程(以距离表示)可以化为: